
JavaScript Automation
Stop Doing Mundane Work

@craigphares
craigphares.github.io/javascript-automation/

As Web Developers, 

We’re Told to Do Lots of Things
Work in small, logical chunks of code to keep things
manageable and organized

Create tests early and often during development (TDD)

Use a preprocessor (like Sass) for CSS to keep code DRY

Compress and minify all static assets to keep load time down

Optimize images to reduce file size without sacrificing quality

How do we perform these tasks
outside of a server environment?

Grunt is a 
Task Runner

As Web Developers, 

We Depend on Lots of Things
Need a layout framework for a quick build?  
Bootstrap, Foundation

jQuery, enough said

Organizing JS into MV*?  
Backbone.js, Angular, Ember

Using audio? 
Howler, SoundJS

How do we reference these
dependencies, while keeping
separation from our own source?

Bower is a 
Package Manager

Our New Workflow

+ =
AwesomeGruntBower

Stack Setup
This assumes that you’re already using Git.  
If not, start using it: git-scm.com

You can clone this entire project from GitHub:

$ git clone git@github.com:craigphares/javascript-automation.git

http://git-scm.com

Bower and Grunt run on Node, but you don’t have to know Node
to use them.

Install node from their website: nodejs.org

Or with Homebrew:  
$ brew install node

http://nodejs.org

Install the Bower command line interface  
$ npm install -g bower

Install the Grunt command line interface  
$ npm install -g grunt-cli

Install Sass 
$ gem install sass

Onto the Project

The package.json File
Node projects require a single package.json file at
the root level.  
$ npm init

Let’s Install Bower
Node modules are installed in the node_modules
directory. 
$ npm install bower --save-dev

The bower.json File
The bower.json file resides at the root level.  
$ bower init

Let’s Install jQuery
Bower components are stored in the
bower_components directory.  
$ bower install jquery --save

$ bower install html5-boilerplate --save 
$ bower install underscore --save 
$ bower install backbone --save 
$ bower install howler --save

Let’s Install Some More

Test-Driven Development
Test-driven development (TDD) is a software development process
that relies on the repetition of a very short development cycle:

Write a (initially failing) test case that defines a new feature

Produce the minimum amount of code to pass that test

Refactor the new code to acceptable standards

TDD encourages simple designs and inspires confidence.

Jasmine is a 
JavaScript Testing Framework

The Gruntfile
The Gruntfile.js file resides at the root level. 
$ npm install grunt --save-dev

Let’s install Jasmine
We’re going to use Grunt to run Jasmine tests.  
$ npm install grunt-contrib-jasmine --save-dev

We also need jasmine-query to handle some DOM manipulation. 
$ bower install jasmine-jquery --save-dev

Folder Structure
Source belongs in /src

Specs belong in /spec

Production build resides in /dist

Update the Gruntfile

Task
Target

Load the plugin
Register our task

Tests live in the spec folder.

We’re going to load a collection
of sounds for our project.

Write a Test
The test fails initially. 
$ grunt test

Run the Test

Write Some Code

We’re using Backbone to load a
collection of sounds.

New Code
The test passes. 
$ grunt test

Run the Test

Success

Let’s Add Some Sass
$ npm install grunt-contrib-sass --save-dev 
And update the Gruntfile.

Task
Target

Load the plugin

Register our task

Run The Default Task
$ grunt

Let’s Improve This Build Script
Official Grunt plugins are named with “contrib”.

$ npm install grunt-contrib-clean --save-dev 
$ npm install grunt-contrib-jshint --save-dev 
$ npm install grunt-contrib-concat --save-dev 
$ npm install grunt-contrib-uglify --save-dev 
$ npm install grunt-contrib-imagemin --save-dev 
$ npm install grunt-contrib-copy --save-dev

Clean

JSHint

Concat

Uglify

Imagemin

Copy

The New Gruntfile
Build the application with one command. 
$ grunt

Our Build

Use connect to boot a server
wherever you like. 
$ npm install grunt-contrib-connect --save-dev

Need a Web Server?

$ grunt start

Use watch to selectively watch
your source for changes.  
$ npm install grunt-contrib-watch --save-dev

Let’s Automate $ grunt watch

Use LiveReload to automatically
refresh the browser.

Templating
index.html Gruntfile.js

A little known feature of Grunt is that it can process Lo-Dash templates.

All Grunt command line arguments are passed to the grunt.options object. 
$ grunt --bobblehead=boba-fett

Command Line Arguments

The Possibilities Are Endless
Compile CoffeeScript with grunt-contrib-coffee

Minimize CSS with grunt-contrib-cssmin

Include more complex templates using grunt-processhtml

Upload your build to a server using grunt-ftp-deploy

Run shell commands with grunt-shell

Visit gruntjs.com/plugins for a full list of Grunt plugins

http://gruntjs.com/plugins

Stop Doing Mundane Work

@craigphares
craigphares.github.io/javascript-automation/

